Written in Bones

Studies on technological and social contexts of past faunal skeletal remains

edited by
Justyna Baron
Bernadeta Kufel-Diakowska

Uniwersytet Wrocławski
Instytut Archeologii

Wrocław 2011
Contents

Preface ... 5

Methods and methodology

Steven P. Ashby
The Language of the Combmaker: interpreting complexity in Viking-Age Industry 9
Elisabeth A. Stone
The Role of Ethnographic Museum Collections in Understanding Bone Tool Use 25

Materials and technology

Aline Averbouh, Jean-Marc Pétillon
Identification of “debitage by fracturation” on reindeer antler: case study of the Badegoulian levels at the Cuzoul de Vers (Lot, France) ... 41
Bárbara Avezuela Aristu, Esteban Álvarez-Fernández, Jesús Jordá Pardo, Emilio Aura Tortosa
The barnacles: A new species used to make a Gravettian suspended object from Nerja Cave (Málaga, Spain) .. 53
Benjamin Marquebielle
Mesolithic bone tools in Southwestern Europe: the example of the French site of “Le Cuzoul de Gramat” ... 63
Stefan Pratsch
Mesolithic antler artefacts in the North European Plain ... 79
Marcin Diakowski
Bone and antler artefacts from Pobiel 10, Lower Silesia, Poland. Are they really Mesolithic? 93
Selena Vitezović
The Neolithic Bone Industry from Drenovac, Serbia ... 117
Erika Gál
Prehistoric antler- and bone tools from Kaposújlak-Várdomb (South-Western Hungary) with special regard to the Early Bronze Age implements 137
Peggy Morgenstern
Typical hide working tools from the late Bronze Age of Moldova ... 165
Corneliu Beldiman, Diana-Maria Sztanesc, Viorica Rusu-Bolindeț, Irina Adriana Achim
Skeletal technologies, metal-working and wheat harvesting: ancient bone and antler anvils for manufacturing saw-toothed iron sickles discovered in Romania ... 173
Katrin Struckmeyer
The bone tools from the dwelling mound Feddersen Wierde, Germany, and their functions 187

Marloes Rijkelijkhuizen
Dutch medieval bone and antler combs .. 197

Hans Christian Küchelmann
Whale Bones as architectural elements in and around Bremen, Germany ... 207

Marloes Rijkelijkhuizen
Large or small? African elephant tusk sizes and the Dutch ivory trade and craft 225

Bernadeta Kufel-Diakowska
The Hamburgian Zinken perforators and burins – flint tools as evidence of antler working 233

Social contexts

Heidi Luik, Mirja Ots, Liina Maldre
From the Neolithic to the Bronze Age: continuity and changes in bone artefacts in Saaremaa, Estonia .. 243

Florentina Oleniuc, Luminița Bejenaru
Preliminary Data Concerning the Manufacturing of Animal Raw Materials in the Chalcolithic Cucuteni B Settlement of Poduri-Dealul Ghindaru, Romania .. 263

Manuel Altamirano García
Bone industry from the Bronze Age in Central Iberia. The Settlement of La Motilla Del Azuer 273

Justyna Baron
Ritual contexts of animal bone deposits from the Roman Iron Age settlement at Magnice, SW Poland ... 285

Felix Lang
Activity not Profession. Considerations about Bone Working in Roman Times 295

Magdalena Konczewska
Bone, horn and antler working in medieval Wroclaw ... 305

Kamilla Pawłowska
The remains of a late medieval workshop in Inowroclaw (Kuyavia, Poland): horncores, antlers and bones .. 313

Authors' Adresses .. 321
Skeletal technologies, metal-working and wheat harvesting: ancient bone and antler anvils for manufacturing saw-toothed iron sickles discovered in Romania

The paper presents the results of the analysis of recent data regarding a unique assemblage of 40 artefacts retrieved during the 2001-2008 archaeological excavations in the “Basilica extra muros” and “Basilica with Crypt (“Florescu”) sectors of the ancient city of Istria (Constanta County, Romania). Almost all of the objects represent completed and used pieces (tools) and there is some raw material (cattle metapodial). There is also an exceptional piece made out of a red deer’s antler (on a segment of a beam). These artefacts were used as anvils for manufacturing toothed iron sickles and have been dated back to the IInd-IIIrd centuries A.D. In the past six decades, these kind of artefacts have generated numerous controversial debates relating to their origins, diffusion and especially to their functional role. Artefacts of this kind have been discovered in two large geographical areas including the Western Basin of the Mediterranean Sea and the Western and North-western regions around the Black sea and have been dated to between the Vth century B.C. and the XVIIIth century A.D. The research methodology included the analysis of various parameters such as: data relative to the context of their discovery, type (established conventionally after a number of technically modified and used anatomic faces: 1-2-3-4), state of conservation, raw material, dimensions, manufacture, traces of use, reshaping, and traces of reuse. The traces of manufacture and use were analysed using an optical microscope. Apart from the relative rarity of these pieces we can mention the fact that this study of antique bone and antler anvils from Romania benefits from an extended and unitary research approach and brings an important documentary contribution to the presence of these controversial artefacts in some Central-Eastern regions of Europe. The artefacts in question illustrate complex interconnections between different traditions over an extended period of time. This study of bone and antler anvils from Romania provides an important contribution to the knowledge of the technology and economy in ancient Europe.

Keywords: agriculture, ancient anvil, ancient sickle, bone and antler industry, iron technology, Istria.

Introduction

On this occasion we are going to discuss a category of artefacts which are generally called “ anvils”. For other European regions and for Northern Africa, the archaeological literature mentions many such artefacts dated from the Hellenistic and the Roman period (Vth century B.C.-Vth century A.D.). These artefacts were discovered in Greek cities from the Black Sea Basin (Olbia, Neapolis, Thanagoria...
etc.), as well as in Scythian-Greek and Getic settlements (Arnăut 2007:298-300; Peters 1986:162-3, pl. III/1-11; Semenov 1970:186-8, fig. 100-102 – with bibliography). Others are largely dated between the VIIth-XVIIIth centuries and were retrieved in settlements from the Western Mediterranean Basin (France, Spain, Portugal, some countries from Northern Africa) (Briosi et al. 1997; Esteban Nadal, Carbonell Roure 2004; Moreno-Garcia et al. 2005a, 2005b, 2007; Poplin 2007a, 2007b; Rodet-Belarbi et al. 2007 – with bibliography).

In the context of new research interest manifested for the topic of bone anvils at the 5th and 7th WBRG some archaeologists and archeozoologists started to pay more attention to this kind of artefacts (e.g. Poplin 2007a, 2007b; Moreno-Garcia et al. 2005a). Consequently we can observe increasing of the list of publications dealing with this topic for Central and Western Europe, including Southern Italy (a piece dated in II nd century BC-I st century AD) and Austria (Gál 2010; Gömöri, Szulovszky 2010; José Gonçalves et al. 2008).

Very recently were published some pieces coming from Hungarian Medieval sites (Xth – XIIIth centuries AD). So, at Felgyő – “Kettőshalmi dűlő” are mentioned bone anvils made of cattle femur coming from Avar context (Kőrösi 2010:112, fig. 7-8). From the rural site of Cegléd – “Fertály-földek II”, there are mentioned 32 bone anvils made of horse and cattle long bones. Other artefacts were discovered in a assemblage of a blacksmith vicus in Budapest, in an oven at the site of Hajdúnánás – “Fürjhalom-dűlő” (Gál et al. 2010:117) and in the manorial settlement of Baj – “Őreg-Kovács-hegy” (anvil made of a cattle radius) (Bartosiewicz 2010:338, Fig. 16; Gál et al. 2010:117). They are also mentioned in the medieval village of Kolon, dated from Árpád period. Bone anvils made of cattle and horse long bones (radius, tibia, metapodials, humerus) were discovered in a pit where had been thrown the debris from a smithy (Kvassay, Vörös 2010:127).

Actually, we may distinguish the area of diffusion of artefacts (considered “puzzling” for decades) around the Mediterranean Basin having its origins, probably, in East Mediterranean and Northern Black Sea regions. The presence of bone anvils in Early Medieval Central Europe is a problem to solve.

Over the years, early mentioned artefacts discovered in the Northern part of the Black Sea were wrongly considered to be polishing tools used for finishing textiles, hides, stone or wood. This is the case of first such pieces published by S.A. Semenov (1970:186-8, fig. 100-102). Due probably to the lack of recent international data, some authors still sustain such a functional interpretation decades after the assertions of “Father of Traseology” (Peters 1986:162-3; Arnăut 2007:302 – with bibliography).

There is a special case where the rows of triangular hollows made during usage of anvils were interpreted as “an unknown type of Getic writing” (the case of the artefacts from Chitila: Boronėnaitė 2005).

Quite recently, “the riddle was solved”: the functional role of those artefacts benefited from the observations of technological behaviour in the Iberian ethnography. In this way, and also by using experimental studies, the “manufacturing chain” of anvils and the way of using them has been established (Esteban Nadal, Carbonell Roure 2004:640-4; Aguirre et al. 2004; Moreno-Garcia et al. 2005b:623-4; Rodet-Belarbi et al. 2007:160).

Context. Objectives

On the bank of lake Sinoe in the area of Istria village, Constanţa County lies the Ancient City of Histria, the first Greek colony on the west shores of the Black Sea and oldest city within the boundaries of Romania. The colony was founded in the middle of the 7th century BC (year 657 BC according to historian Eusebius) by colonists from Milet, to trade with the native Getae. The city had an uninterrupted growth for 1300 years, beginning with the Greek period and ending with the Roman-Byzantine period. The ruins of the settlement were first mentioned in 1868 by French archaeologist Ernest Desjardins. Archaeological excavations were started by Vasile Pârvan in 1914, and continued after his death in 1927 by staff of archaeologists led successively by Scarlat and Marcelle Lambrino (1928-1943), Emil Condurachi (1949-1970), Dionisie Pippidi, Petre Alexandrescu, Alexandru Suceveanu (1970-2011) and today Mircea Victor Angelescu. There are several Sectors largely excavated every year with very important archaeological results (Suceveanu, Angelescu 2005).

The artefacts presented in this article were discovered during recent research directed by Alexandru Suceveanu from “Vasile Pârvan” Institute of Archaeology of the Romanian Academy, Bucharest. For the results of recent archaeological research in Histria see: Suceveanu, 2010 – with bibliography. There are two sectors of the site from which the bone and antler industry was analysed in last years: the Sector Basilica Extra Muros, researches led by Alexandru Suceveanu and Viorica Rusu-Bolindeţ from the National History Museum of Transylvania, Cluj-Napoca during 2001-
Skeletal technologies, metal-working and wheat harvesting: ancient bone and antler anvils...

2006 (Suceveanu et al. 2004; Rusu-Bolindeț, Bădescu 2006; Rusu-Bolindeț et al. 2009); the Sector Basilica with Crypt-“Florescu”, researches led by Irina Adriana Achim during 2002 and 2008 (“Vasile Pârvan” Institute of Archaeology of the Romanian Academy, Bucharest) (Suceveanu et al. 2003; Achim et al. 2009).

The bone anvils are part of worked osseous assemblages from the two above-mentioned sectors, including 90 pieces and comprising: bone and antler anvils, bone hair pins, bone hafts, bone bands, horn sleeves, a piece of game (astragalus from sheep/goat), blanks, different partially shaped raw materials, waste products etc. (Beldiman et al. 2007, 2009; Beldiman, Sztancs 2010a, 2010b).

The bone and antler anvils were of particular interest. This group of artefacts has an important documentary potential because it illustrates, in a unique way, complex economic activities that seem apparently very different, but which were in reality interconnected (farming, agricultural activities, iron craft, bone and antler industry craft, woodcraft etc).

Taking into account all these aspects, the leaders of the archaeological excavations offered them to the main author of this article for a systematic and detailed study. The study began in 2007 when the artefacts discovered in 2004 in the Sector Basilica Extra Muros (HST-BEM) were analysed. In 2008 the systematic study of bone and antler industry discovered during 2001-2003 was finished. Other contributions were related to artefacts discovered in 2006 in the Sector Basilica Extra Muros and to artefacts retrieved in the Sector Basilica with Crypt-“Florescu”
The 38 artefacts from HST-BEM (Figs. 1-2, 4) were discovered abandoned in secondary contexts. They come from structures, pits and from the vicinity of some complexes used for reducing the iron ore, connected to the craft area from Section I (the western extremity, about 15.8 m) belonging to the Early Roman period (probably, 1st-7th decades of the IInd century A.D.) (Rusu-Bolindeț et al. 2009, 2010).

The artefacts from HST-BFL (Fig. 3) were discovered in secondary contexts and probably abandoned. They cannot be dated with certainty because of the former interventions related to Grigore Flo-
Fig. 3. Istria – Sector Basilica with Crypt (“Florescu”).
rescue’s excavations. There are some clues that indicate chronological data during *grosso modo* the IInd century A.D. (Achim et al. 2009). From this sector two pieces have been analysed: a piece which was discovered in 2002 and another one found in 2008 (tables 1-2; charts 1-2).

Methodology. Typology

The methodology applied during our study takes into account the registration and the analysis of all essential data regarding: the artefacts’ identification using a code (which is made up of the site’s code, the discovery year, the sector’s code and a serial number – for example: HST/2001-BEM 3); the realisation of the repertoire (which lays out the dataset regarding the code of the piece, discovery context, raw material, conservation status, subtype, description), morphometry (the total length/the preserved length; width/diameter of the edges and of the middle part; the length of active part on each side; maximal/minimal width of active part on each side – dimensions are given in millimetres).

Artefacts that are generically called anvils were set in a special wooden installation, on a workbench and were used in the façonnage/shaping of iron sickles (striking the serrated edges – using the technique of indirect percussion with a triangular section chisel/poinçon). This operation was applied at the initial shaping of the sickles’ blades, and also at the sickles’ repairs (Fig. 5).

The typological classification adopts conventional criteria which reflect the usage stage at the moment that the artefacts were abandoned. Taking into consideration the number of anvils’ shaped anatomical faces/sides (which become active/smoothed parts) we may conventionally distinguish the next subtypes: simple anvils (with one active side), double anvils (with two active sides), triple anvils (with three active sides), quadruple anvils (with four active sides), undetermined subtypes (fragments) and raw material. As we already mentioned, the subtypes reflect the stage of shaping and usage of the artefacts (Beldiman et al. 2008:50-61) (Fig. 4).

The typological structure of the collection from Histria consists of: simple anvils (17), double anvils (6), triple anvils (2), quadruple anvils (6), undetermined subtypes (fragments) (2) and raw materials (7) (tables 1-2; charts 1-2).
Generally the raw materials used for these kinds of anvils were various: most of them are skeletal elements from large domestic mammals (cattle, horse, camel etc.): long bones (metapodials, tibia), mandibles, coxal bone. We also have some special cases when segments of red deer antler beams and tines were used.

Artefacts from HST-BEM are made only of cattle metapodials (metacarpal and metatarsal bones) (38 pieces). There is one exception at HST-BFL where an artefact is made of cattle metapodial and another of a red deer antler (tables 1-2; charts 1-2).

The aim of artefacts’ analysis is to record all contextual, morphological, typological and technological data and to highlight the “manufacturing chain” and use wear. In this way, we may reconstruct “the technological biography” of each artefact. We currently use low power optical microscopy (4x-40x) with the aim of recording exhaustive data of the artefacts’ traces of manufacture and use.

Manufacture and use

In most of the cases, the anvils were made of long bones (especially cattle and equid metapodials), but there are also cases when there have been used flat bones (like mandible). These pieces have one or more active parts shaped by chopping. They present specific triangular impressions in parallel or curved rows resulting from the operation of shaping active part of serrated sickles blades. In case of the metapodials, the surfaces of diaphysis were whittled down and smoothed. On this prepared surfaces, there are rows of triangular shaped dents. The artefacts may have one to four active parts where the smiths sharpened the serrated teeth of the sickles. The traces left by this procedure are represented by rows of triangular wholes. These rows are disposed parallel while others diverged, converged or they are crossed. The length the rows depended on...
the number of dents and the separation between them. There are some cases where the diaphysis was whittled and re-smoothed for more times with the purpose of reusing the artefact (Briois et al. 1997; Esteban Nadal, Carbonell Roure 2004; Moreno-Garcia et al. 2005a, 2005b, 2007; Poplin 2007a, 2007b; Rodet-Belarbi et al. 2007 – with bibliography).

Presented bone and antler anvils are made of cattle metapodials (Bos taurus) (39) and a segment of antler beam (Cervus elaphus) (1).

Firstly, we take into consideration the analysis of different traces of manufacture and use, so that we may propose the reconstitution of the phases of the standard “manufacturing chain” of the anvils on cattle metapodials: no débitage; façonnage/shaping in two stages: intensive chipping and abrasion/intense scraping using a metal blade (a knife?) – so obtaining a flat and smooth surface. This smooth surface was made on one-two-three or four bone’s anatomical faces (Fig. 5).

Wear traces are surprisingly uniform; the aim of using such pieces (anvils) was to shape (sawing-toothed) the iron sickle’s active part (blade) or to reshape it. After all active parts/faces of the anvils were used and entirely covered by small triangular dents/hollows. There are often situations where the smooth surfaces are reshaped – including the fragments of pieces fractured on the middle part.

Wear traces were produced while the “sickle’s teeth” were shaped. The dents produced have a length of 2-3 mm and were obtained by indirect striking with hammer – with a narrow active part – the cutting edge of the sickle’s blade using an iron chisel/poinçon, probably one having a triangular section. The rows of around 5-10 dents are parallel, divergent, convergent or even crossed.

Covering the whole anvil’s surface with rows of dents supposed: a) the preparation and the usage of another active part of anvil; there are cases when a single piece had four active parts which corresponded to the four anatomical bone’s faces; those were prepared and used successively; b) unique or double reshaping of used surface by chopping, abrasion or scraping using a metal tool, as in the first stage of shaping. All these conclusions are based on observations of microscopic traces preserved on surfaces’ anvils.

Because of the renewed shaping of the anvils, the compact tissue of metapodial got thinner and very often, the artefacts broke in the middle part. This break was due to the high pressure that was applied during use. In this case, the artefact was abandoned or, if the preserved length was sufficient, it was reused/reshaped.

The “technological biographies” of the anvils are various and generally implies several stages: 1. the preparation of the active part on an anatomical face/ side of the bone; 2. using and covering it entirely with dents/hollows; 3. reshaping the side; 4. using and covering it entirely with dents/hollows; 5. preparing the active part on the second side; 6. using and covering it entirely with dents/hollows; 7. preparing the active part on the third side; 8. using and covering it entirely with dents/hollows; 9. establishing the active part on the fourth side; 10. using and covering it entirely with dents/hollows; 11. reshaping the side; 12. reusing; 13. abandoning. There are situations when probably at least two active sides were prepared from the first stage of shaping; but this hypothesis, ethnographically supported, is difficult to argue (Esteban Nadal, Carbonell Roure 2004:640-644; Moreno-Garcia et al. 2005b:623-624; Rodet-Belarbi et al. 2007:160).

Hereinafter, we will present typological fiches of some representative bone and antler anvils discovered at HST-BEM and HST-BFL.

HST/2001-BEM 1 • Fig. 1. Section I. Square 3. -1.56 m. On the ground-level of the iron processing workshop • Quadruple anvil made of metapodial; unbroken; the active part was shaped on four sides; raw material: cattle metapodial (Bos taurus); façonnage/shaping: direct percussion/chopping on all sides; use wears: dents/triangular hollows successively generated, measuring about 1 mm in length, and deep about 1 mm, arranged in rectilinear or curved short rows, almost parallels, placed transversal or oblique on the bone’s flat surface. This type of traces was generated by indirect and very precise percussion using a hammer and a small iron chisel/poinçon with a distal part having probably a triangular section and a pointed end. The tool was reshaped by direct percussion/chopping. Total length 221; length of active part 150-160.

HST/2002-BEM 3 • Fig. 1. Section I. Square 5. -1.72 m. On the ground-level of the iron processing workshop • Simple anvil made of metapodial; broken in antiquity; detached epiphyses; proximal segment; active part was shaped on posterior side; raw material: cattle metapodial (Bos taurus); façonnage/shaping: direct percussion/chopping on posterior side; without dents/triangular hollows or wear traces; probably broken during the façonnage/shaping. Preserved length 125; length of active part 85-100.

HST/2003-BEM 2 • Fig. 1. Section I. Square 4. -2.15 m. From the rests of the furnace content (level...
of iron processing workshop) • Double anvil made of metapodial; unbroken; active part was shaped on two sides (anterior and posterior); raw material: cattle metapodial (Bos taurus); façonnage/shaping: direct percussion/chopping on all sides; use wears: dents/triangular hollows successively generated, measuring about 1-2 mm in length, and deep about 1 mm, arranged in rectilinear or curved short lines, almost parallels, placed transversal or oblique on the bone’s flat surface. This type of trace had been generated by indirect, very precise percussion using a hammer and a small iron chisel with a distal part having probably a triangular section and a pointed end. Preserved length 80; length of active part 75.

HST/2008-BFL 1 • Fig. 3. Section II. -1.13 – 1.38 m. Central nave, at the northern part of the brick pavement, from a brown level mixed with shells, rich in fragments of pottery • Simple anvil made of metapodial; broken in Antiquity; active part was shaped on posterior side; raw material: distal segment of cattle metapodial (Bos taurus); façonnage/shaping: direct percussion/chopping and axial scraping on posterior side; use wears: 5 rows of dents/triangular hollows successively generated. Preserved length 75; Length of active part 45. Probably dated at about IInd century A.D.

HST/2002-BFL 6 • Fig. 3. Section I. Squares 11-12. -1.15 – 1.45 m. Site inventory no. 03 1 • Triple anvil made of red deer antler beam; secondary use of an earlier piece that had perforations at the ends, probably shaped probably as yoke – to fit across a person’s shoulder so that can be carried two equal loads; raw material: red deer (Cervus elaphus) antler – basal segment of beam between the 2nd and the 3rd tines; the basal parts of tines are preserved; anatomic sides were shaped during first phase of manufacture using oblique chopping to remove the anatomical surface (perlure). In this way more planes were obtained, with smooth surfaces (multifaceted aspect). These sides were used in the second phase as anvils. Use wears: on the posterior, medial and lateral side of the beam segment we may distinguish rows of dents/triangular hollows successively generated, arranged in rectilinear or curved short lines; this type of traces had been generated by indirect very precise percussion using a small iron chisel with distal part having probably a triangular section and a pointed end. Some surfaces with dents/triangular hollows were reshaped using axial scraping and abrasion (secondary using). Total length 295; length of active parts 140-150; proximal end at perforation level 61/30; middle part 41/32; distal end at perforation level 62/32; diameter of perforation 10. Dated probably at about IInd century A.D.

1 According to the preliminary available data, in previous publications 2003 is the year mentioned for the discovery of this artefact – Beldiman, Sztancs 2009a. Actually, the object was retrieved in the 2002 archaeological season.

Analogies

Anvils made of cattle or horse metapodials, tibias, mandibles, coxal bone etc. as well as those made of red deer antler were also discovered in other sites from Romania: Ostrov-Durostorum, Constanţa County (ancient Roman city; discoveries in an adjacent site with various workshops located near the
city; 4 artefacts: Beldiman, Elefterescu, Sztancs 2009; Beldiman, Elefterescu, Sztancs 2010); Chitila, Ilfov County (open-air small site belonging to Getic autochthonous population from the Roman period; 13 artefacts: Boroneanţ 2003; 2005; Bălăşescu, Radu, Nicolae 2003). These discoveries represent the analogies from Romania for the artefacts retrieved at Histria which are presented on this occasion.

In this context, we should mention the unique artefact HST/2002-Bfl 6, the biggest one until now (a yoke? – reused as an anvil) which, so far, doesn’t have analogies in the archaeological literature consulted. Red deer antler artefacts were initially manufactured and used like anvils and are also (but rarely) published in Romanian literature. There is another piece made of a segment of an antler’s beam in Romania at Durostorum (Beldiman et al. 2010, fig. 4 – piece DRS 4) and in Republic of Moldavia at Saharna Nouă – a piece made of a segment of antler tine (Arnăut 2007:302, fig. 1, 3).

Wear traces that are preserved on these artefacts are identical or very similar to those observed on the pieces from Histria because of their use as anvils for shaping the sawing-toothed sickles.

Aspects of the economy. Conclusion

The bone and antler artefacts, discovered at HST-BEM and HST-BFL, (the oldest known until now in Romania) are very important finds that complete the list of discoveries which add to discoveries from other Central-Eastern European sites, i.e. those from Republic of Moldova and Ukraine. Also, they are important as they provide precise data for craft activities during the 2nd century AD. The presence of “Histrian anvils” provides supplementary and specific arguments for the existence of metal-working workshops in the area. The existence of bone/antler workshops are also attested in the same area by the artefacts (associated in pits with anvils), like bone and horn waste. This is why we can presume that the anvils were shaped in the workshops too. As we know, sickles were frequently used in the harvesting of cereals in many agrarian regions of the Western Pontic shore as well. Such worked bone and antler finds are not yet systematically published by the authors of excavations or by the archeozoologists; thus, the idea about spread in time and space of manufacture and use of these artefacts is still very partial for proto-historic and historic sites in Romania or other regions of Europe and Africa. For this reason anvils have been occasionally analysed.

The artefacts under discussion show the specific and unique connections between different activities (in our case, iron smelting and the manufacture of agrarian tools, the bone and antler industry and harvesting techniques). The analysis of the bone and antler pieces and also the anvils shed light on the complex problem regarding the antique economy and iron and bone & antler technology in the region of the Lower Danube²

The artefacts presented in this paper offer the opportunity to draw for the first time conclusions regarding the bone and antler industry at Histria. The study should be continued with further approaches regarding the pieces that were discovered in ancient archaeological excavations or in recent ones carried out in other areas of the site.

² For a more general discussion on the antique economy in the Dobrogea region see Suceveanu 1977, 1998.
Table 2. Istria/2001-2008 – Sector Basilica extra muros (BEM) and Basilica with Crypt (“Florescu”) (BFL).
Bone and red deer anvils: distribution after subtypes and year of discovery

<table>
<thead>
<tr>
<th>Subtype</th>
<th>HST – Sectors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BEM</td>
<td>BFL</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>III</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>UN</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RM</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

UN = Undetermined subtype (fragments); RM = Raw material (technically non-modified metapodials)

Chart 1. Istria/2001-2008 – Sector Basilica extra muros (BEM) and Basilica with Crypt (“Florescu”) (BFL).
Bone and red deer anvils: distribution after raw materials and year of discovery

Chart 2. Istria/2001-2008 – Sector Basilica extra muros (BEM) and Basilica with Crypt (“Florescu”) (BFL).
Bone and red deer anvils: distribution of subtypes

Acknowledgements

During the last three decades, the remarkably constant and successfully efforts to fully research the topic of ancient bone and antler anvils are due to the efforts Dr. François Poplin – Museum National d’Histoire Naturelle, Paris. First author would like to express once again his warmest thanks to Dr. Poplin for his kind support in giving the chance to study the hard-to-find literature relating to this specific prob-
lem and for the profitable exchange of opinions and data).

We wish also thank to Dr. Alice Choyke and Dr. László Bartosiewicz who gave us access to very fresh articles dealing with discoveries from Italy and Hungary.

The contributions of Diana-Maria Sztancs to the present paper (database, artefact analysis etc.) form part of Project ID-7706 (Invest in people! - The development of doctoral studies’ and the PhD students’ competitiveness in the United Europe), “Lucian Blaga” University, Sibiu, project financed by Social European Fund (SOP HRD).

English version by Diana-Maria Sztancs and Corneliu Beldiman; translation revised by Andreea-Daniela Hompoth.

References

Armăt, T. 2007. Data about a category of bone tools with the function of polishing and shaping, Thracia 17, 295-305.

Algarve: trabalhados de um arrabalde islâmico de Silves: aspectos
ungaria, sopron.

niile 2001-2004, Anale Universității Crestine „Dimitrie Cantemir” Seria Istorie, Serie nouă 1, 30-52.

Boroneanț, V. 2003. Câteva oseminte de cal ornamental-
tate descoperite la Chitila-„Fermă”, București, Materiale de istorie și muzeografie 17, 11-25.

Boroneanț, V. 2005. Scrisirea pe oase – o scrisire necunoscută identificată în săpăturile arheologice de la
Chitila, București, Materiale de istorie și muzeografie 19, 12-35.

Briois, F., F. Poplin and I. Rodet-Belarbi 1997. Aigu-

Esteban Nadal, M. and E. Carbonell Roure 2004. Saw-
toothed sickles and bone anvils: a medieval technique from
Spain, Antiquity 78(301), 637-46.

Gál, E. 2010. Bone artifacts from the chora of Metaponto,
In: L. Bartosiewicz (ed.) Archaeozoology at Pantanello and Five Other Sites, Austin: university of texas, 71-86.

yarországi Egyetem, Sopron.

Fondul Național Cultural din cadrul Academiei Maghi-
are de Științe, Sopron Academic VEAB Hortobágyi Con-
servarea Societatea Gene Ltd. Universitatea de Vest din Ungaria, Sopron.

Körösi, A. 2010. Szarmata és avarkori csonteszközök Felgyő-Kettőshalmon. Typology of the Worked Bone Im-

Moreno-García, M., C.M. Pimenta, J.P. Ruas 2005b. Safras em osso para picar foícinhas de gume serrilhado... a sua longa história!, Revista Portuguesa de Arqueologia 8(2), 571-627.

Moreno-García, M., C.M. Pimenta, P.M. López Aldana, A. Pajuelo Pando 2007. The Signature of a Blacksmith on a Dromedary Bone from Islamic Seville (Spain), Archaeo-

Peters, B.G. 1986. Kostoreznoo delo v antičným gos-
udarstvah Severnogo Pričernomor’ja. Moskva.

Poplin, F. 2007a. Des os supports à dentier les fau

Poplin, F. 2007b. Des fau
ciles de silex sur andouill-
er de cerf de Çatal Hüyük (Turquie) aux fau
ciles de fer dentées sur metapodes de boeuf de Montaillou (Occitanie): une histoire de longue durée à travers l’espace méditer-
ranéen, In: I. Sidéra, E. David, A. legrand (eds.) 6th Meet-

Rusu-Bolindeț, V. and Al. Bădescu 2006. Histria. Sec-

Suceveanu, Al. 1977. *Viața economică în Dobrogea romană (secolele I-III e.n.*), București: Institutul de Arheologie „Vasile Pârvan”.

